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INTRODUCTION

It is well known that the effects of the viscosity and thermal conductivity of

a gas in the flow field about a body moving at high supersonic speed may be of

great significance. For certain flight modes, these effects may become apparent in

the form of an interaction of the boundary layer with the external "inviscid"

flow.' For still higher flight velocities and flight altitudes, it may become neces-

sary to investigate the entire flow field on the basis of the complete Navier-Stokes

equations for a viscous heat-conducting gas. The problem of analyzing and solv-

ing these equations is known to involve great mathematical difficulties. Only a

few exact solutions of these equations are known at present, all of which refer

to the simplest cases of motion. The present work deals with the study of certain

new problems associated with the motion of a viscous heat-conducting gas, on

the basis of the complete Navier-Stokes equations for the limiting case where

the Mach number is infinitely large.

In the investigation of real gases, the transition to an infinitely large Mach

number should always be considered as a process in which the speed of sound in

undisturbed flow tends to zero while the flmv speed remains fixed.' Hence, the

flow of a viscous heat-conducting gas of very high supersonic speed may be

treated as a flow with zero absolute temperature in the unperturbed region.*

A basic feature of such flows, as shown in Ref. '2, is that instead of an asymp-

totic attenuation of the disturbances at infinity, there is always a surface (front)

thAt separates the region of disturbed motion from the remainder of the space

occupied by the undisturbed gas. An explanation for this is that the viscosity

and heat conductivity of the gas are functions of the temperature, which de-

crease and become zero with the latter. For flows within shock waves, such a

* This result constitutes a generalization, for the case of a real gas, of the krumn gas-dynamic
principle stating the mmdependence upon Mach number of a flow of very high supermmic speed.'
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surface is, of course, the advancing front of a shock wave propagating through

the gas at rest.

The solutions discussed in the present work relate primarily to flows in high-

intensity shock waves. The study of the structure of a strong shock wave allows,

in particular, to de fine the behavior of the solution near the front, which in the

general case is a singular solution. The discussion includes also certain self-

similar nonsteady motions of a gas, the self-similarity of the motions being

defined by their limiting state, i.e., the zero temperature in the unperturbed

region. Formally, this is associated with the fact that, in this case, the number

of the dimensional parameters of the problem decreases. A detailed analysis is

given of only one such problenl: the uniformly accelerated motion of an infinite

plate. The solution of this problem with inclusion of the numerical results

appears to be the first  exact solution  of the Navier-Stokes equations obtained

for the case of the flow of a viscous compressible gas about a body.

In all cases the gas is considered as an ideal gas with constant specific heat,

constant Prandtl number, and an exponential dependence of viscosity upon

temperature.

STRUCTURE OF A STRONG SHOCK WAVE, AND BEHAVIOR

OF SOLUTIONS NEAR THE FRONT SURFACE

To gain insight into the characteristic singularities of the solution behavior

near the front, and to obtain certain relations of significance for the following

discussion, let us first examine the simplest type of motion of a viscous heat-

conducting gas, i.e., a one-dimensional steady motion. To this belongs the

thoroughly investigated flow within a shock wave that propagates through a

gas at rest.' Let us investigate this flow on the assumption that the Mach

number of the unperturbed stream is infinitely large. Let the velocity of the

unperturbed portion of the flow be V, and the density be  poc;  while the pressure

p,  the temperature Toc, and the enthalpy h are equal to zero. The angle fi
-

between the normal to the front surface (Fig. ) and the velocity vector we

will assume, for conformity, as not equal to zero (oblique shock wave). The

axis y in the Cartesian system of coordinates we postulate along the normal

to the front. We denote the components of t he velocity vector of the flow under

investigation through  u, r,  and the pressure, density, and enthalpy through  p, p,

and  h,  respectively.

The law that governs the dependence of on viscosity enthalpy we write in

the form:

where r is a constant. From the dimensional constants  p„ 'cr , which are

included in the conditions of the problem, may be derived the quantity /, having

the dimensionality of length.f

Quantity / k of the onkr of the length of the free path of molecules lwhind a shock wave.



CERTAIN PROBLEMS OF HYPERSONIC FLOW (;21

C 2n-1= V.
Po.




We introduce the nondimensional independent variable and the nondimen-
sional unknown functions
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The equations of the one-dimensional steady motion for these variables can
be written in the form
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Here, 0- is the Prandtl number, and 7 = (/C. is the specific-heats ratio of
the gas. The boundary conditions of the problem are the following:

	

= = -p- = 1, p = h =  0 at Y -  (5)

the solution is limited at  y +

- 	
V cos 0V. sin '




Fig. 1.
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As is known,' the system of equations (4) can be completely integrated for

a = 3.1/ ,If here, n = 1, then its particular solution that satisfies Eq. (5) is written

in the elementary form':

= 1

7-1 = -3 (1 + €) [ (1 + e) (1 —+ EE )h
v —

1 - V-2

9 II



1
p = , 17-) —  ph

2 ' ' Y

The solution for 7 = 1.4 is given in Fig. 2.
Analysis of the obtained relations indicates that the perturbed portion of

the flow is separated from the uniform incident flow by a front which (by selec-

tion of the unessential arbitrary constant of integration) coincides with the axis

= O. In the n = 1 case under consideration, the front surface is the discon-

tinuity surface of the derivatives having finite nonzero values at p = O.

In the general case of an arbitrary Pranda number and an arbitrary positive

n, a solution in closed form cannot be obtained. However, its behavior near the

front surface can be investigated by rather simple means. It is readily shown that

at 0, the exact equation (4) can be reduced to the approximate equations

of the form:

d-a d dft)
dti dri dY

dP4  d  (4. dT))

dp — dp 3 dpdp



dh _L dh)
(W.) dp dY dP

c/T: — 1 —
0

dt) dy

Integrated with allowance for (5), they yield the following approximations

to the unknown functions at g  o :

1 ,rz

= 1 - -"
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where .1 and B are arbitrary constants of integration. It must be noted that the

formulas [Eq. (8)] can be used to obtain an approximation of the solution near

the front in any problems involving curvilinear and unsteady shock waves,

because a small element of the front surface may always be considered plane,

and the velocity of its propagation during a sufficiently short period of time

may he considered constant.

For the special case of a plane steady shock wave, the constants .1 and B
are equal to zero.

From the derived equations (8), it can be seen that in the general case, the

solution near the front has a singular behavior.

SELF- SIMILAR MOTIONS OF A VISCOUS HEAT- CONDUCTING GAS

If the gas temperature in the unperturbed region is zero, then the density

is the only thermodynamic parameter that determines the state of the gas in

this region. The other dimensional parameter of the problem is the constant

in the law of the dependence of viscosity on enthalpy (1). The dimensions of

these equations are as follows:

If 7,2n-1



Here, L is the symbol for the length unit, T for the time unit, and M for the

inass unit. I f t here are no imrameters of the pn)bleni whose dimensions are

1,!..e0Sj 9

0166'7 _

0 10 2.0

Fig.
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independent of p and it is obvious that we have to deal with a self-similar
problem. To eliminate the symbol for the mass unit, we introduce the ratio
p/e which has the dimensionality

[  p0,1  L2n-2
T2n-1

Self-similar, would then be the following cases:
the uniformly accelerated motion of a thermally insulated, or absolutely

cold, body without a characteristic length (plate, cone, wedge) if n = 3/2; since
in this case the ratio [Eq. (10)] takes on the dimensionality of the acceleration
[a] = LT-2;

the rotation of thermally insulated, or absolutely cold, conical axially
symmetric surfaces if n = 1; since, in this case, the ratio [Eq. (10) ] assumes
the dimensionality of the angular velocity [S2I = T.

a point explosion with central symmetry if n = N; since, in this case,
Eq. (10) has the dimensionality

1

=

1/3
L-5/3[P. --

E T-213

E being the energy of the explosion.
Let us examine in detail just one problem of the first type—namely that of


a gas which flows under the influence of a uniformly accelerated infinite plate.


UNIFORMLY ACCELERATED MOTION OF AN INFINITE PLATE

The nonsteady motion of a gas under the influence of an infinite plate parallel
to the r axis, depends in the general case upon the two independent variables
y and t. The system of equations which describes such a motion has the form:

(
au

 au) a
( au)

p —ayA -a-y-

	

av al, Op 4 a ( )
P( + + - - A —ay =ay 3 ay ay

	

( ah ah ap aP ±1±)--(p ah

	

P ar v—ay— at + ay ay

au ) 4 ( y
3 ay

apapr— +0atay '
—

P =ph

) n the basis of the discontinuity equation, we introduce the function x,
defined by the relations

aXax— pu, = p

atay

(10)

(12)
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and therefore the system of equations (11) from the independent variables y,  t
to the independent variables x, •

au a ( au)
at ax pp -ax

avap 4 a ( av)
-a = - - +

aX axax (13)

ah 1 ap

•

1 a ( ah) ,
-h

4 (  aV
(

\ 2

	

1213 ) AP —at p at p ax ax ax ax

ay_ 1 aY - 1 

— = P - ph

ax at 'Y
-4

Let the plate move at a constant acceleration vector a which is directed to its

plane at an arbitrary angle of incidence a (Fig. 3). In conformity with what

has been said above, we assume the dependence of the viscosity coefficient upon

enthalpy to have the form

	

= Ch"  (14)

The determinant parameters of the problem will then lack the constants having

the dimensionalities of length and time. The only possible nondimensional
combination between the independent variables x,  t and these parameters,

will be

	

z -
pcoat2

(15)

so that the solution of the problem under discussion may be given in the form:

=  atC(z) p = pcoR(z)

= atV(z) h = a2t2H(z)  (16)

p = pa,a2t2P(z)  y =  at2Y(z)

S',--aZ7Y(.4/

oC

Mg.  3.
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Substituting these expressions into the system of equations (13). we obtain
for the dimensionless variables the following system of ordinary differential
equations.

U — 2zU' = k(RH312U ')'

4 '- 2z V' = — P'-3k(1?H3 2' 1-')'

2R(H — zH') = 2 (P — zP') - R(RH"H' )'
a

kR2113 2 (r2

— 1 z
R217' = 2zR', P = RH, Y =

2 R

where the dimensionless parameter

 

4
: 3




(19)

is inversely proportional to the Reynolds number of the problem; the primes
denote differentiation with respect to z.

Let us examine the system of boundary conditions. At the plate surface we
have

z = 0, U = cos a,V = sin a

as well as one of the two conditions:

H' = 0

for an insulated plate, or

H = 0

for the case of cold surface.
Assume now that the region of perturbed motion is separated from the

remaining part of the space by a front surface that propagates at a constant
acceleration. At the surface of such a front we then have:

z = zo, U=V=P=H= 0, R = 1 (23)

where the constant zo is to be determined. The rest of the problem consists in
the integration of the system [Eq. (17) 1with the boundary conditions [Eqs. (20)
through (23)].

To solve this problem, it is first necessary to examine the behavior of the
solution of system [Eq. (17)] near the front at z zo, since in this case this is a
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singular solution. As has been said above, this can be accomplished by postulat


ing constant the propagation velocity of the front during a sufficiently short


period of time. Then we may use the approximations derived in the first section


of this paper for the components of velocity, enthalpy, pressure, and density

1E0. (8)].
The transition from the variables in these formulas to the variables [Eqs. (15),

(16)] is readily performed by stating that in conformity with Eqs. (13), (18),

and (23), the propagation velocity of the front is equal to

c dt[at2y(zo)]
= 2atzo (24)

After some simple transformations, the expressions [Eq. (8)] (at n = 3/2) then

yield the following approximations for the unknown functions at z —0 zo:

U A (z„ — z)2'"

1 (3a)2 3 —
V =Zo

2Z0 k-y 4
—

(z„ — z)" --f- B(zo —

)2,3
Hzo(zo — 0 2' 3k-y

(23)

	

R 1 -- P 	 H

	

2zo '

The constants zo, J. and B in these formulas are to be determined. Their number,

of course, is equal to that of the boundary conditions LEgs. (20) through (22)]

at z =

Thus, the solution of the problem under examination, at a small distance

from the front, is given by the approximations [Eq. (23)], and from this point on

can be set forth by a numerical method. However, in practice, such a method of

calculation becomes extremely cuinbersome due to the necessity of determining

the three arbitrary constants zo, A, and B on the basis of the boundary con-

ditions at the opposite end of the interval. These difficulties can be appreciably

reduced by making use of the invariability of the system [Eq. (17)] with regard to

the transformation form:

U = XU R =

=  z = Xi
(26)

=

where X is an arbitrary constant. By selecting this constant in the form

3a y" 2/3
X =Zo (27)
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the expressions [Eq. (25)] are reduced to the form

( 1 —

)27/3o

ZO

I -^=
(

2z0 4




zo
—

(1 —  2/3
ZO/

T2-z---0V'
— 11

—

here, Eq. (27) yields

(28)

(29)

-

In this way, two of the three independent parameters A, B , and k (say A


and i;') can be now taken arbitrarily, and only one (h) must be determined,

either from the condition [Eq. (21)1 or [Eq. (22)]. Such a simplification of the


problem, however, does not allow to prescribe a priori the Reynolds number

and the angle of incidence on the plate. These are found as a result of integration.
To determine the angle of incidence we make use of the relation

a = arctan
V (0) (30)

which follows from the boundary conditions [Eq. (20)]. The same boundary


conditions serve as a basis for the determination of the transformation param-
eter [Eq. (27)] :

1
x =

i'12(C
)

i72(C
)

(31)

whereafter all initial functions as well as the values of the parameters zo and k
can be determined.

NUMERICAL RESULTS

The described method for the solution of the problem was used in the nu-

merical calculations of the flows near a thermally insulated and a cold plate.
The system of differential equations was integrated by the Runge-Kutta method,

using an electronic computer. The program was developed for automatic selec-
tion of the step with respect to a given accuracy, the latter being chosen as
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0.01 percent. The calculations were performed for two values of the Reynolds

number that were in correspondence with the parameter values 7,7 = 1 and

= 0.1. The values of the adiabatic exponent and the Prandtl number were
taken as y = 1.4 and a = 0.70.

It should be noted that a further decrease in the value of the parameter k
(increase in Reynolds number) greatly complicates the calculations due to the
market variation of all functions with decreasing thickness of the shock-wave
layer.

Some results of calculations carried out for near-zero angles of incidence are
given in Figs. 4 through 10 in the form of the dependence of the unknown
functions upon the variable

Y - Y(0)  
'77 )7 (zo) — Y(0)

/Pa
.12/40,

2.6" ,1ZO.,700t.20 Trhe
45.7.7

o'4

(2•4'

o QS

Fig. 4.

QS

(32)

o oos 01 V

Fig. 5.
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From the analysis of the obtained relations it is seen that a change in Re has
practically no effect upon the temperature profile in the perturbed region (Fig. 6),
and only slight affects on the changes of the longitudinal velocity component
(Fig. 4). The cooling of the plate affects to a great extent the character of
the behavior of all functions of the flow field. It is of interest to note, however,
that on the density profile, this effect is concentrated in a very thin layer at
surface, where the density of the gas undergoes an unlimited increase while the
temperature tends to zero (Figs. 6, 7). The surface of the absolutely cold plate
is the singular point of the solution. To illustrate this singularity$ we employ
first of all the condition of the finiteness of the heat flow through the unit of
plate-surface area, which yields

n
r1 312 dH

H n2/— 77° or 5 (33)
dn

0.3"

o qes OS

Fig. 6.

f.o

OS

.10 .4)
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From the condition of the finiteness of friction stress on this surface, we have:

R3,2  d(' °772/577 Or
d71

(34)

Since the pressure at the surface  n  = 0 is also finite, the equation of state
yeilds the law of the change in density at  n 0:

R
-2/5

(35)

Further, from the continuity equation it may be concluded that the vertical
velocity component varies proportionally to 77:

V 17' (0)77 (36)

To determine the character of the change in pressure, it is necessary to use the
equation which after transformation to the independent variable 77 can be
written in the form:

4

	

R (V —  2771" + VV') = —  P' k (II 3/2V )

where = zon, and the primes denote differentiation with respect to this vari-
able. Using the results obtained, we find that the change in pressure in a narrow
layer at the plate surface is defined by the "viscous" term [Eq. (37)], so that at
77 —7 0:

P — P (0) — V' (0)12'5  (38)

Hence, the pressure near the greatly cooled surface of a plate that moves
in its own plane can withstand extreme changes. This forbids the use of the
boundary-layer equation for the investigation of the flow in this region. With
increasing distance from the plate surface, the relative effect of the viscosity
decreases rapidly, while the influence of the inertia terms [Eq. (37)] increases.
Already at quite small distances n, the change in pressure will be defined by
the inertia terms. As a result, we obtain a behavior of the function  P(n)  as shown
in Fig. 8, and also, in more detail, for small values of 77 in Fig. 9.

The initial decrease in  P  is associated with the existence of a region near the
plate surface, where the gas moves toward the surface, i.e., the constant V'(0)
included in Eq. (30) is negative (Figs. 5, 10).

It should he noted that the described singular character of the behavior of
the solution near the surface of the cold plate is not a consequence of the small
magnitude of the Reynolds numbers assumed in the calculations, since in the
derivation of Eqs. (33) through (38) this assumption did not take place. But
these results refer to a region of the flow which is so narrow that the applicability
of the equations of continuum mechanics to this flow is possibly not fully justified.

(37)
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The analysis of the results obtained for the region adjacent to the front
(n = 1) shows that with increasing Reynolds number, the normal velocity
2omponent, the pressure, and density assume here increasingly larger external
values (see Figs. 5, 7, 8). Speaking generally, a property common to all the
flows examined is that for the very small values of the Reynolds number assumed
in the calculations, the shock wave does not form, so that neither the pressure
nor the temperature attain anywhere the values that correspond to a full drop
across the shock wave.

In conclusion, we might note that the exact solution which has been obtained
for the problem of the uniformly accelerated motion of an infinite plate is of
interest for the evaluation of various approximate methods of analysis. Thus,
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for example, it would be of interest to assess the accuracy of the theory of strong
interaction between the boundary layer and the external flow, and also the
accuracy of the approximate calculations of the structure of nonsteady shock
waves.
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